3 (Sem-6/CBCS) STA HC 2

2022

STATISTICS

(Honours)

Paper: STA-HC-6026

(Multivariate Analysis and Nonparametric Analysis)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer **any seven** of the following questions as directed: 1×7=7
 - (a) The moment generating function of bivariate normal distribution with parameters $(0, 0, \sigma_1^2, \sigma_2^2, \rho)$ is _____.

(Fill in the blank)

(b) Let $X \sim N_P(\mu, \Sigma)$. Then the characteristic of X is given by

(i)
$$e^{i t \mu + \frac{1}{2} t' \sum t}$$

(ii)
$$e^{it'\mu-\frac{1}{2}t'\Sigma t}$$

(iii)
$$e^{it' \mu + \frac{1}{2}t' \sum t}$$

(iv) None of the above

(Choose the correct option)

- (c) Ordinary sign test considers the difference of observed values from the hypothetical median value in terms of:
 - (i) signs only
 - (ii) magnitudes only
 - (iii) sign and magnitude both
 - (iv) None of the above (Choose the correct option)
- (d) What is dispersion matrix in Multivariate data analysis?
- (e) Let $(X, Y) \sim \text{BVND}(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$. Then state the conditional pdf of Y given X = x.

- What is run in non-parametric (f) method?
- (g) Define Multiple correlation coefficient.
- (h) Let $X \sim N_3 \left(\mu, \Sigma\right)$. Given that

$$\Sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 0 \\ 3 & 0 & 4 \end{pmatrix}$$

Are X_2 and X_3 independent?

- The marginal distribution of a Bivariate (i) normal distribution follows univariate normal distribution. (State True or False)
- The Kruskal-Wallis test is meant for: (i)
 - (i) one way classification
 - (ii) two way classification
 - (iii) non classified data
- (iv) None of the above (Choose the correct option)
- Answer any four of the following questions 2. $2 \times 4 = 8$ briefly:
 - (a) Define mean vector and dispersion matrix for multivariate data analysis.

- (b) State the marginal pdfs of X and Y in case of $(X, Y) \sim \text{BVND}(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$.
- (c) What assumptions are generally made for a non-parametric test?
- (d) Let $X = (X_1 \ X_2 \ X_3)'$ have variance covariance matrix

$$\Sigma = \begin{pmatrix} 25 & -2 & 4 \\ -2 & 4 & 1 \\ 4 & 1 & 9 \end{pmatrix}$$

Find ρ_{12} .

- (e) Define marginal distribution of X_1, X_2, \dots, X_k (k < p) in a p-variate multivariate analysis. Also define the conditional distribution of $X_{k+1}, X_{k+2}, \dots, X_p$ given X_1, X_2, \dots, X_k .
- (f) What indication can one get from the number of runs?
- (g) Give a brief idea of Principal component analysis.

4

The pdf of bivariate normal distribution (h)

$$f(x,y) = k \exp \left[-\frac{1}{2(1-\rho^2)} \left(x^2 - 2\rho xy + y^2 \right) \right],$$
$$-\infty < (x,y) < \infty$$

Find the constant k.

- Answer any three of the following 3. $5 \times 3 = 15$ questions:
 - If $(X, Y) \sim \text{BVND}(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$, then show that X and Y are independent if and only if $\rho = 0$.
 - Describe Kolmogorov-Smirnov one (b) sample test stating its assumptions and hypotheses.
 - (c) Let $(X, Y) \sim BVND(0, 0, 1, 1, \rho)$. Then show that

$$Q = \frac{X^2 - 2\rho XY + Y^2}{(1 - \rho^2)}$$

is distributed as chi-square with 2d.f.

(d) Let $X \sim N_P(\mu, \Sigma)$. Then find the distribution of CX where C is a $p \times p$ non-singular matrix of constant elements.

- (e) Write an explanatory note on test of randomness.
- (f) With usual notations, prove that

$$r_{12\cdot3} = \frac{r_{12} - r_{13}r_{23}}{\sqrt{\left(1 - r_{13}^2\right)\left(1 - r_{23}^2\right)}}$$

- (g) Examine if Hotelling's T^2 is invariant under changes in the units of measurement.
- (h) Describe one sample sign test for testing the null hypothesis that the population median is a given value.
- 4. Answer **any three** questions from the following: 10×3=30
 - (a) (i) State any two applications of multivariate analysis. 2
 - (ii) Let $(X, Y) \sim \text{BVND}(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$. Find the conditional distributions of X/Y=y and Y/X=x.
 - (b) Derive the probability density function of p-variate normal distribution.
 - (c) (i) Describe the Wilcoxon Mann-Whitney U test.
 - (ii) Let $(X, Y) \sim \text{BVND}$ with parameters $\mu_x = 60$, $\mu_y = 75$, $\sigma_x = 5$, $\sigma_y = 12$ and $\rho = 0.55$. Then find $P\{65 \le X \le 75\}$

- (d) Let X_{α} ($\alpha = 1, 2, \dots, N$) be a random sample from $N_P\left(\mu, \Sigma\right)$ and let $\overline{X} = \frac{1}{N} \sum_{\alpha=1}^{N} X_{\alpha}$ be the sample mean vector. Then prove that \overline{X} is distributed as $N_P\left(\mu, \frac{\Sigma}{N}\right)$.
- (e) (i) Let $X_{\alpha}^{(1)}(\alpha=1,2,\cdots N_1)$ be a random sample from $N_P\left(\underline{\mu}^{(1)},\Sigma\right)$ and let $X_{\alpha}^{(2)}(\alpha=1,2,\cdots N_2)$ be another random sample from $N_P\left(\underline{\mu}^{(2)},\Sigma\right)$ where the common dispersion matrix Σ is unknown. Discuss the procedure to test the hypothesis $H_0:\underline{\mu}^{(1)}=\underline{\mu}^{(2)}$ using Hotelling's T^2 statistic.
 - (ii) In what way the ordinary sign test can be performed for paired samples? Explain.

- (f) (i) State any two properties of multivariate normal distribution.
 - (ii) Derive the bivariate normal density as a particular case of multivariate normal distribution.
- (g) (i) Let $X \sim N_3 \left(\mu, \Sigma \right)$. Find the distribution of 5

$$\begin{pmatrix} X_1 - X_2 \\ X_2 - X_3 \end{pmatrix}$$

- (ii) Derive the formula for Multiple correlation coefficient for a trivariate distribution.
- (h) (i) Explain the distribution free method.
- (ii) Derive the moment generating function of a bivariate normal distribution with usual parameters.