3 (Sem-6/CBCS) STA HC 2 ## 2022 ## STATISTICS (Honours) Paper: STA-HC-6026 ## (Multivariate Analysis and Nonparametric Analysis) Full Marks: 60 Time: Three hours ## The figures in the margin indicate full marks for the questions. - 1. Answer **any seven** of the following questions as directed: 1×7=7 - (a) The moment generating function of bivariate normal distribution with parameters $(0, 0, \sigma_1^2, \sigma_2^2, \rho)$ is _____. (Fill in the blank) (b) Let $X \sim N_P(\mu, \Sigma)$. Then the characteristic of X is given by (i) $$e^{i t \mu + \frac{1}{2} t' \sum t}$$ (ii) $$e^{it'\mu-\frac{1}{2}t'\Sigma t}$$ (iii) $$e^{it' \mu + \frac{1}{2}t' \sum t}$$ (iv) None of the above (Choose the correct option) - (c) Ordinary sign test considers the difference of observed values from the hypothetical median value in terms of: - (i) signs only - (ii) magnitudes only - (iii) sign and magnitude both - (iv) None of the above (Choose the correct option) - (d) What is dispersion matrix in Multivariate data analysis? - (e) Let $(X, Y) \sim \text{BVND}(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$. Then state the conditional pdf of Y given X = x. - What is run in non-parametric (f) method? - (g) Define Multiple correlation coefficient. - (h) Let $X \sim N_3 \left(\mu, \Sigma\right)$. Given that $$\Sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 0 \\ 3 & 0 & 4 \end{pmatrix}$$ Are X_2 and X_3 independent? - The marginal distribution of a Bivariate (i) normal distribution follows univariate normal distribution. (State True or False) - The Kruskal-Wallis test is meant for: (i) - (i) one way classification - (ii) two way classification - (iii) non classified data - (iv) None of the above (Choose the correct option) - Answer any four of the following questions 2. $2 \times 4 = 8$ briefly: - (a) Define mean vector and dispersion matrix for multivariate data analysis. - (b) State the marginal pdfs of X and Y in case of $(X, Y) \sim \text{BVND}(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$. - (c) What assumptions are generally made for a non-parametric test? - (d) Let $X = (X_1 \ X_2 \ X_3)'$ have variance covariance matrix $$\Sigma = \begin{pmatrix} 25 & -2 & 4 \\ -2 & 4 & 1 \\ 4 & 1 & 9 \end{pmatrix}$$ Find ρ_{12} . - (e) Define marginal distribution of X_1, X_2, \dots, X_k (k < p) in a p-variate multivariate analysis. Also define the conditional distribution of $X_{k+1}, X_{k+2}, \dots, X_p$ given X_1, X_2, \dots, X_k . - (f) What indication can one get from the number of runs? - (g) Give a brief idea of Principal component analysis. 4 The pdf of bivariate normal distribution (h) $$f(x,y) = k \exp \left[-\frac{1}{2(1-\rho^2)} \left(x^2 - 2\rho xy + y^2 \right) \right],$$ $$-\infty < (x,y) < \infty$$ Find the constant k. - Answer any three of the following 3. $5 \times 3 = 15$ questions: - If $(X, Y) \sim \text{BVND}(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$, then show that X and Y are independent if and only if $\rho = 0$. - Describe Kolmogorov-Smirnov one (b) sample test stating its assumptions and hypotheses. - (c) Let $(X, Y) \sim BVND(0, 0, 1, 1, \rho)$. Then show that $$Q = \frac{X^2 - 2\rho XY + Y^2}{(1 - \rho^2)}$$ is distributed as chi-square with 2d.f. (d) Let $X \sim N_P(\mu, \Sigma)$. Then find the distribution of CX where C is a $p \times p$ non-singular matrix of constant elements. - (e) Write an explanatory note on test of randomness. - (f) With usual notations, prove that $$r_{12\cdot3} = \frac{r_{12} - r_{13}r_{23}}{\sqrt{\left(1 - r_{13}^2\right)\left(1 - r_{23}^2\right)}}$$ - (g) Examine if Hotelling's T^2 is invariant under changes in the units of measurement. - (h) Describe one sample sign test for testing the null hypothesis that the population median is a given value. - 4. Answer **any three** questions from the following: 10×3=30 - (a) (i) State any two applications of multivariate analysis. 2 - (ii) Let $(X, Y) \sim \text{BVND}(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$. Find the conditional distributions of X/Y=y and Y/X=x. - (b) Derive the probability density function of p-variate normal distribution. - (c) (i) Describe the Wilcoxon Mann-Whitney U test. - (ii) Let $(X, Y) \sim \text{BVND}$ with parameters $\mu_x = 60$, $\mu_y = 75$, $\sigma_x = 5$, $\sigma_y = 12$ and $\rho = 0.55$. Then find $P\{65 \le X \le 75\}$ - (d) Let X_{α} ($\alpha = 1, 2, \dots, N$) be a random sample from $N_P\left(\mu, \Sigma\right)$ and let $\overline{X} = \frac{1}{N} \sum_{\alpha=1}^{N} X_{\alpha}$ be the sample mean vector. Then prove that \overline{X} is distributed as $N_P\left(\mu, \frac{\Sigma}{N}\right)$. - (e) (i) Let $X_{\alpha}^{(1)}(\alpha=1,2,\cdots N_1)$ be a random sample from $N_P\left(\underline{\mu}^{(1)},\Sigma\right)$ and let $X_{\alpha}^{(2)}(\alpha=1,2,\cdots N_2)$ be another random sample from $N_P\left(\underline{\mu}^{(2)},\Sigma\right)$ where the common dispersion matrix Σ is unknown. Discuss the procedure to test the hypothesis $H_0:\underline{\mu}^{(1)}=\underline{\mu}^{(2)}$ using Hotelling's T^2 statistic. - (ii) In what way the ordinary sign test can be performed for paired samples? Explain. - (f) (i) State any two properties of multivariate normal distribution. - (ii) Derive the bivariate normal density as a particular case of multivariate normal distribution. - (g) (i) Let $X \sim N_3 \left(\mu, \Sigma \right)$. Find the distribution of 5 $$\begin{pmatrix} X_1 - X_2 \\ X_2 - X_3 \end{pmatrix}$$ - (ii) Derive the formula for Multiple correlation coefficient for a trivariate distribution. - (h) (i) Explain the distribution free method. - (ii) Derive the moment generating function of a bivariate normal distribution with usual parameters.